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High Efficiency InP Solar Cells from Low Toxicity Tertiarybutylphosphine

Richard W. Hoffman Jr. a), Navid S. Fatemi b), David M. Wilt e), Phillip E Jenkins b),

David J.Brinker e) and David A. Scheiman b)

Large scale manufacture of phosphide based semiconductor devices by organo-

metallic vapor phase epitaxy (OMVPE) typically requires the use of highly toxic

phosphine. Advancements in phosphine substitutes have identified

tertiarybutylphosphine (FBP) as an excellent precursor for OMVPE of InP. High

quality undoped and doped InP films were grown using TBP and trimethylindium.

Impurity doped InP films were acheived utilizing diethylzinc and silane for p and n

type respectively. 16 % efficient solar cells under air mass zero, one sun intensity

were demonstrated with Voc of 871 mV and fill factor of 82.6%. It was shown that

TBP could replace phosphine, without adversely affecting device quality, in

OMVPE deposition of InP thus significantly reducing toxic gas exposure risk.

a) Analex Corporation, c/o NASA LeRC, 21000 BrookPark Rd., MS 302-1, Cleveland, Oh 44135.

b) NYMA, Inc., e/o NASA LeRC, 21000 BrookPark Rd., MS 302-1, Cleveland, Oh 44135.

c) NASA Lewis Research Center, 21000 BrookPark Rd., MS 302-1, Cleveland, Oh 44135.



Indiumphosphide(InP)andInPbasedsemiconductormaterialsarewidely used for

optoelectronic applications. High efficiency solar cells (1,2) havebeen produced which demonstrate

excellent radiation resistant properties. (z4) The most efficient cells are fabricated using organo-

metallic vapor phase epitaxy (OMVPE) to deposit n/p junctions on single crystal substrates. The

method of depositing InP typically requires the use of phosphine (PH 3) and trimethylindium

(TMIn) precursors. While excellent InP f'dms can be deposited using these precursors, as

demonstrated by very high mobility undoped layers with carrier concentrations below 1 x l0 t 4

carriers/cm 3, the extreme toxicity of PH 3 poses a barrier in large scale commercial production of

InP. PH 3 _old Limit Value (TLV) of 0.3 ppm) (5) is extremely toxic and lethal at very low

concentrations( Lethal Concentration for 50% of population (LCso) for rats of 11 ppm). Scale up

of InP growth in production facilities would require large amounts of PH 3 since it must be

supplied in excess to the OMVPE reaction process. Significant exposure risk would result in a

manufacturing environment using PH3.

Because of these environmental and safety consideratons, efforts have been made to

develop substitute precursors suitable for the OMVPE process. (6,7) Tertiarybutylphosphine (TBP)

has been identified as a possible low toxicity substitute for PH 3. TBP is not considered to be a

poison and has a TLV of 1100 ppm. It is supplied as a liquid with a very suitable vapor pressure

for introduction to the OMVPE reactor. Excellent InP films can be grown at lower temperatures

and at lower V/I/I ratios than with PH3. (8,9) At present, however, applications have been limited

to microwave devices. Large area devices, such as solar cells, that require long minority carrier

lifetimes for efficient operation, have not been investigated.

In this article, we report the growth of high quality, high lifetime InP devices using TBP

and TMIn. Undoped InP was grown to establish that our reactor was capable of high quality

material growth. Doping studies were then carried out to characterize the growth process in

preparation for device fabrication. Finally, we show that it is possible to produce InP n÷/p solar
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cells with output characteristics that compare favorably with the best state-of-the-art PH 3 grown

devices.

Growth of InP was performed in an OMVPE reactor of our own design and construction.

It is characterized as a horizontal, subatmosphefic pressure system. The quartz reaction vessel has

an internal liner which is circular in cross section at the inlet and expands gradually into a

rectangular cross section. The substrate rests on a silicon carbide coated graphite susceptor

heated by a solid state RF generator and induction coil. Growth temperature is measured by a Pt -

PtRh thermocouple embedded in the susceptor. A run-vent gas manifold with pneumatic valves

and electronic mass flow controllers injects the precursors into the palladium purified hydrogen

carrier gas stream. The system pressure, temperature, mass flow rates and switching are all

computer controlled. The reactor was typically operated at 150 torr. Growth was performed by

flowing 14.5 I.tmol/min TMIn (Sumitomo) with 0.7 torr partial pressure of TBP (American

Cyanamid) over the substrate at a susceptor temperature of 590 °(2. Growth rates under these

conditions were a very reproducible 2.2 lam/hr resulting in layers uniform to within +5% over a 2"

diameter wafer. Growth efficiency was found to be 2.5 x 103 lam/mol. Doping was achieved by

injection of DiethylZinc (DEZn) from a liquid source at - 10°C (American Cyanamid) and Silane

(Sill4) diluted to 200 ppm in H 2 (Scott Specialty Gases) for p and n type respectively.

The quality of undoped InP layers was assessed by room temperature Hall characteristics

and low temperature photoluminescence (PL). Doped InP films 2 to 4 I.tm thick were characterized

by Hall measurements and photochemical C-V profiling.

Hall measurements showed undoped InP layers to have n-type conductivity with 2 x 1015

carriers/cm 3 and room temperature majority carrier mobility above 4000 cm2/volt-sec. A PL

spectrum from an undoped TBP grown InP sample at 1.5°K is shown in Fig. 1. The luminescense

was excited by the 514 nm line from an Ar + laser at a power density of approximately 12.5

mW/cm 2. The spectrum shows a well defined near band edge exciton structure common to high
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quality InP. (7,9,10) The free exiton is visible as a shoulder on the 1.4180 eV X-D ° peak. The full

width half maximum of the X-D ° peak was 0.7 meV. The ratio of the X-D ° peak to the next largest

peak was approximately 45. Other peaks (Fig. 1 inse0 seen could be identified as a D-A for

earbon(t 1) at 1.3755 eV and a possible deep donor or donor vacancy complex (12) at 1.3900 eV.

Doped InP in the appropriate ranges for the n+/p solar cells was achieved. Hall and c-v

measurements revealed n type carrier concentration of 3 x 10 is carrierslcm 3 at a Sill 4 mole fraction

of 4.7 x 10 -7. A DEZn mole fraction of 1.4 x 10 -7 gave p type conductivity at 1 x 1017

carriers/cm 3.

Incorporation of dopants into the InP in our study appears more efficient than others (15-

17). A calculated distribution coefficient, Ksi based on the equation below where X s and X v are

the composition of Si in the solid and vapor phases respectively, for Si incorporation in our system

xS_ [SiI-14]
V

Ksi - where Xsi =
, [TMLa]

Xsi

at 590°C was 2.7 x 10 -2.

This value is slightly higher than for atmospheric grown InP from PH 3 at the same growth

temperature.(15) Distribution coefficient for Zn was calculated as 3.1 x 10 -3 which agrees well

with the data from literature at atmospheric pressure. Other (is) low pressure data show Kzn values

for PH 3 grown InP of 2.8 x 10 .4 at a growth rate of 2 lira/hr. However, in a second reactor,

identical to the one employing TBP, we have grown InP from PH 3 at low pressure and have

calculated Ksi to be similar to the TBP data. Another explanation for discrepancies could be due to

the TMIn bubbler. The solid TMIn in the Sumitomo bubbler is supported on small diameter beads

to keep the TMIn transport constant as the source is consumed. This style of bubbler was used
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onbothof our reactors. Perhaps the actual amount of TMIn carried to the substrate was not

accurately known.

Solar cells were fabricated using planar back Au-Zn contact(13) and a Au-Ge-Au(l 4) front

emitter grid by standard photolithography lift-off techniques. The structure consisted of a 3.5 lain

thick p base doped to 1 x 10 t7 carriers/cm 3 grown on a p type substrate doped to 3-5 x 10 is

carriers/era 3 without a p÷ buffer layer. A 50 nm thick n + emitter doped to 3 x 101 s carriers/cm 3

was then grown and thinned by chemical etching to 25 to 30 nm after metallization. The anti-

reflective (AR) coating was a single layer evaporated silicon monoxide. The resulting 6 mm x 8

mm cells were tested under air mass zero (AM0) spectrum at one sun intensity.

As shown in Fig. 2, conversion efficiencies greater than 16% have been achieved. The

open circuit voltage (Voc), short circuit current density (Jsc), fill factor (FF) and dark saturation

current density (Jo) of this device are compared in Table I with the best state-of-the-art values that

have been achieved using a PH3 source (1). As can be seen, the values of Voc, FF, and Jo are all

comparable with the state-of-the-art values. The only shortfall is in Jsc-

Fig. 3 compares the internal quantum efficiencies of the TBP cell and the PH3 cell. While

there are small differences in the short wavelength response, the major discrepancy occurs at long

wavelengths, indicating that carriers generated near the rear p-p+ interface in the TBP cell thus

incorporates any defects that were present at the substrate surface prior to epitaxial deposition.

Another current loss factor (see table) is the lack of a dual layer antireflection coating on the

TBP cells. The lower value of JSC in the TBP grown cells can thus be explained as the result of

carrier losses at a defective p-p+ interface and an inferior anti-reflection coating. Elimination of

these defects in the TBP grown cells would reduce and very likely eliminate the TBP-PH 3 Jsc

differences.
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WethusconcludethatTBP is aviablealternativeprecursorfor thegrowthof solarcells

and other minority carrier lifetime devices. High quality undoped lnP was grown and effective

doping of InP grown with TBP was readily achieved. High efficiency solar cells were

demonstrated. Exposure risk could be significantly reduced by utilizing TBP in lieu of the

traditional PH 3 precursor while maintaining device quality. Simplified effluent treatment and

reduced exposure risk are expected to offset the higher cost of the TBP precursor.

The authors would like to thank W. E. Frey for his aid in design and construction of the

OMVPE apparatus, E.B. Clark for assistance in OMVPE apparatus operation, M. Faur the c-v

profile measurements and R. Lowe and K. J. Wester for Hall measurements and V. G. Weizer for

critical manuscript review.
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Table 1.

TBP PH 3

FF

Voc 

Jo (A/cm2)

J sc(A/cm 2 )

p buffer

Dual layer AR

.826 .824

.871 .876

5.77 x 101`7 5.62 x 1017

30.7 36.3

No Yes

No Yes

*Reference 1
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Figure 1 .--PL spectrum taken at 1.5 °K from undoped InP grown by
OMVPE from TMIn and "I'BP, Inset is an enlarged view of a portion

of the same spectrum.
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Figure 2.--I-V characteristic of a InP solar cell under I sun illumi-

nation intensity of the air mass zero spectrum. The n+/p cell

was produced by OMVPE using TMIn and "rBP.
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Figure 3.--Internal quantum efficiency from an InP solar cell
(without anti-reflection coating) fabricated by OMVPE from
TMIn and TBP is compared to the best PH 3 produced InP cell.
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